

MeshCentral2

MeshCentral2

Installerôs Guide

Version 0.0.4
July 31, 2018
Ylian Saint-Hilaire

 ii

Table of Contents

1. Abstract ... 1
2. Amazon Linux 2 .. 1

2.1 Getting the AWS instance setup .. 1
2.2 Installing NodeJS ... 2
2.3 Installing MongoDB.. 2
2.4 Port permissions .. 3
2.5 Installing MeshCentral ... 3
2.6 Configuring for MongoDB .. 5
2.7 Manually starting the server .. 5
2.8 Automatically starting the server ... 6

3. Raspberry Pi ... 7
3.1 Installing NodeJS ... 7
3.2 Port permissions .. 7
3.3 Installing MeshCentral ... 8
3.4 Configuring for LAN-only mode ... 9
3.5 Manually starting the server .. 10
3.6 Automatically starting the server ... 10

4. Ubuntu 18.04 .. 11
4.1 Installing NodeJS ... 11
4.2 Installing MongoDB.. 11
4.3 Port permissions .. 12
4.4 Installing MeshCentral ... 12
4.5 Configuring for MongoDB .. 13
4.6 Manually starting the server .. 14
4.7 Automatically starting the server ... 14
4.8 Increased Security Installation ... 15

5. Microsoft Azure ... 16
6. Google Cloud .. 18

 iii

Document Changes

July 20, 2018 ï 0.0.1
 Initial version with Amazon Linux 2, Raspberry Pi and Ubuntu 18.04.

July 21, 2018 ï 0.0.2
 Added Microsoft Azure using Ubuntu.

July 23, 2018 ï 0.0.3
 Added Google Cloud.

July 31, 2018 ï 0.0.4
 Added a section on a better and more secure way to install on Ubuntu.

 iv

 v

 1

1. Abstract

This guide is specifically intended to help users install MeshCentral from start to finish. Once
installed, you can take a look at the MeshCentral userôs guide for information on how to configure
MeshCentral for your specific use. In this document, we will look at installing MeshCentral on AWS
Linux, Raspberry Pi and Ubuntu.

2. Amazon Linux 2

In this section, we will look at installing MeshCentral on Amazon AWS with ñAmazon Linux 2ò.
This is a low cost instance and a free tier is available so you can experiment or run a small
instance of MeshCentral and it will work perfectly fine.

2.1 Getting the AWS instance setup

On AWS EC2, you can launch an instance and select ñAmazon Linux 2ò. In this case, itôs the first
option available.

When launching a new instance, you are asked to use or create a security group with the allowed
inbound TCP and UDP ports. The security group should look like this:

Type Protocol Port Range Description

SSH TCP 22 SSH

HTTP TCP 80 HTTP

HTTPS TCP 443 HTTPS

Custom TCP Rule TCP 4433 Intel AMT CIRA

Custom TCP Rule TCP 8080 Swarm Server*

 2

All security group rules should have a source of ñ0.0.0.0/0ò and ñ::/0ò. The last rule for port 8080 is
only needed if migrating from a MeshCentral1 server, most people donôt need it and should not be
added.

If you are not going to be managing Intel AMT computers, you can remove port 4433. One can also
remove port 80, however itôs needed to get a Letôs Encrypt certificate and useful to route users from
the HTTP to the HTTPS web page.

For all the following sections, we assume that we are in the ñec2-userò home path. You can do:

cd ~

This will change the current path to the home folder.

2.2 Installing NodeJS

To get started, launch an instance and start a SSH session to it. You can
use SSH on Linux or Putty on Windows to login to the AWS instance.

The first thing to do is get NodeJS installed on the instance. We will be
installing a long term support (TLS) version of NodeJS. Additional
information on how to do this can be found here. We first install the node
version manager then activate it and install the NodeJS TLS. Itôs done with 3 commands:

curl - o- https://raw.githubusercontent.com/creationix/nvm/v0.33.8/install.sh | bash

. ~/.nvm/nvm.sh

nvm install -- lts

We can test what version of NodeJS is installed using:

node - v

2.3 Installing MongoDB

If we are going to run a large instance, itôs best to use MongoDB
as the database. If you are using a small instance, you can skip
installing MongoDB and MeshCentral will use NeDB instead
which is a light weight database that is probably great for
managing less than 100 computers.

If you want to use MongoDB, we can install MongoDB Community Edition. More information on
how to do this can be found here.

Using ñnanoò create the file ñ/etc/yum.repos.d/mongodb-org-4.0.repoò:

sudo nano /etc/yum.repos.d/mongodb - org - 4.0.repo

Then, put this in it:

[mongodb - org - 4.0]

name=MongoDB Repository

baseurl=https://repo.mongodb.org/yum/amazon/2/mongodb - org/4.0/x86_64/

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-amazon/

 3

gpgcheck=1

enabled=1

gpgkey=https://www.mongodb.org/static/pgp/server - 4.0.asc

This file will setup the repository that we will be using to bet MongoDB. Once done, you can install
the package using yum and get it started like this:

sudo yum install - y mongodb- org

sudo service mongod start

To verify that MongoDB is running, you can enter the MongoDB shell like this:

mongo -- host 127.0.0.1:27017

You can leave the shell using Ctrl-C. The database and log files will be create at these locations:

/var/lo g/mongodb

/var/lib/mongo

This is useful to know if you want to make a backup of the database file.

2.4 Port permissions

On Linux, ports below 1024 are reserved for the ñrootò user. This is a security feature. In our case
MeshCentral will need to listen to ports 80 and 443. To allow this, we need to allow node to listen
to ports below 1024 like this:

whereis node

node: /home/ec2 - user/.nvm/versions/node/v8.11.3/bin/node

sudo setcap cap_net_bind_service=+ep /home/ec2 - user/.nvm/versions/node/v8.11.3/bin/node

We first locate the node binary, using ñwhereis nodeò, we then use the ñsetcapò command to add
permissions to node. Note that we take the path given by whereis and place it in the setcap
command.

2.5 Installing MeshCentral

Itôs almost time to install MeshCentral but first, we need to know the public name of our AWS
instance, you can run the following command:

curl http://169.254.169.254/latest/meta - data/public - hostname

It will return the public name of the AWS instance, for example:

ec2 - 1- 2- 3- 4.us - west - 2.c ompute.amazonaws.com

You can use this name, or if you have another registered DNS name pointing to the server instance,
you can also use that now. Note that you must setup any alternative name on your own,
MeshCentral will not do this for you. This name must be correct and must resolve to this AWS
instance as all mesh agents will use this name to connect back to this server.

Now, we can use the node package manager (NPM) to install MeshCentral.

npm install meshcentral

 4

After that, we can run MeshCentral for the first time. We want to run in WAN-only mode since we
will not be managing any computers on the same local network at this server. We also want to
create a server with a certificate name that is the same at the AWS instance name. So, we will use
ñ--wanonlyò and ñ--cert [name]ò arguments to get the server started. For example:

node ./node_modules/meshcentral -- wanonly -- cert ec2 - 1- 2- 3- 4.us - west - 2.compute.amazonaws.com

At this point, the server will create its certificates and start running.

MeshCentral HTTP redirection web server running on port 80.

Generating certificates, may take a few minutes...

Generating root certificate...

Generating HTTPS certificate...

Generating MeshAgent certificate...

Generating Intel AMT MPS certificate...

Genera ting Intel AMT console certificate...

MeshCentral Intel(R) AMT server running on ec2 - 54- 245 - 141 - 130.us - west - 2.compute.amazonaws.com:4433.

MeshCentral HTTPS web server running on ec2 - 54- 245 - 141 - 130.us - west - 2.compute.amazonaws.com:443.

Server has no users, n ext new account will be site administrator.

You can now open a browser to the name of the server, for example:

https://ec2 - 1- 2- 3- 4.us - west - 2.compute.amazonaws.com

You will see the server working as expected. You will get a certificate error since the server is used
an untrusted certificate for now. Just ignore the error and see the MeshCentral Userôs Guide to fix
this.

At this point, the server is usable but, there are two things that may still need to be done. First, if
we opted to use MongoDB, we have to configure MeshCentral to use a MongoDB database. By
default, NeDB will be used which should only be used for small deployments managing less than
100 computers. We also need to automatically start the server when the AWS instance starts.

To continue, stop the MeshCentral server with CTRL-C.

 5

2.6 Configuring for MongoDB

By default, MeshCentral uses NeDB with a database file located in ~/meshcentral-
data/meshcentral.db. This is great for small servers, but if we opted to install MongoDB, letôs make
use of it. We need to edit the config.json file located in the meshcentral-data folder.

 nano ~/meshcentral - data/config.json

Then, make the start of the file look like this:

{

 "settings": {

 "MongoDb": "mongodb://127.0.0.1:27017/meshcentral",

 "MongoDbCol": "meshcentral",

 "WANonly": true,

 "_Port": 443,

 "_RedirPort": 80,

 "_AllowLoginToken": true,

 "_AllowFraming": true,

 "_WebRTC": false,

 "_ClickOnce": false,

 "_UserAllowedIP" : "127.0.0.1,::1,192.168.0.100"

 },

é

}

If you start with the default config.json created by MeshCentral, you will need to remove some ñ_ò
characters in front of settings, mongodb, mongodbcol and wanonly. You can also add a ñ_ò to other
values.

You can then same the same and run MeshCentral again. This time, you donôt need to specify the
certificate name or --wanonly. You just need to run it like this:

node ./node_modules/meshcentral

The server should now run correctly and use MongoDB. You can even delete the file
~/meshcentral-data/meshcentral.db as itôs not going to be used anymore. You can check that it
runs correctly by browsing to the serverôs address again and creating a new account. The first
account that is created will be administrator for the server, so donôt delay and create the first
account right away.

Once you are done, we can stop the server again using CTRL-C and in the next sections, we will
look at starting the server in the background.

2.7 Manually starting the server

We can manually start and stop the MeshCentral server in the background in different ways. In this
section, we are going to create two commands ñmcstartò and ñmcstopò to take care of this. Type
this to create the two commands:

echo " node ./node_modules/meshcentr al > stdout.txt 2> stderr.txt & " > mcstart

chmod 755 mcstart

echo " pkill ïf meshcentral " > mcstop

 6

chmod 755 mcstop

You can now run the ñ./mcstartò command to launch the server in the background and stop it using
the ñ./mcstopò to stop it. This should work pretty well, but if the AWS instance is ever stopped and
started again, the server will not automatically launch.

2.8 Automatically starting the server

Since Amazon Linux 2 supports systemd, we are going to use that to auto-start MeshCentral in the
background. First, we need to know our own username and group. If we do ñls -lò in our home folder
we get for example:

drwxr - xr - x 2 default default 4096 Jul 20 00:03 Desktop

drwxr - xr - x 2 default default 4096 Jul 20 00:03 Documents

drwxr - xr - x 2 default default 4096 Jul 20 00:03 Downloads

é

Note the username and group name, in this example itôs ñdefaultò for both. We need this information
to create the system service description file. To create this file type:

sudo pico /etc/systemd/system/m eshcentral.service

Then enter the following lines:

[Unit]

Description=MeshC entral Server

[Service]

Type=simple

ExecStart=/usr/bin/node /home/ default /node_modules/meshcentral

WorkingDirectory=/home/ default

User= default

Group= default

Restart=always

Restart service after 10 seconds if node service crashes

RestartSec=10

[Install]

WantedBy=multi - user.target

Note that the user and group values have to be set correctly for your specific situation. Also, the
ExecStart and WorkingDirectory lines includes the path to the userôs home folder which includes
the username in it. Make sure that is set correctly.

Once this is done, you can now start, enable, stop and disable using the following commands:

sudo systemctl start meshcentral.service

sudo systemctl en able meshcentral.service

sudo systemctl stop meshcentral.service

sudo systemctl disable meshcentral.service

Type in the first two commands to start and enable the service. Enabling the service will make it
automatically start when the computer restarts.

 7

Once the server is launched, you can access it using a web browser as before. From this point
on, refer to the MeshCentral Userôs Guide for information on how to configure and use
MeshCentral.

3. Raspberry Pi

In this section, we will look at installing MeshCentral on the famous Raspberry Pi. This computerôs
low price makes it a perfect always-on system for managing computers on a home or small
business network. This installation will work on any version of the Raspberry Pi, but version 3
certainly much faster.

For this installation, we are going to use the Raspbian operating system. You can use the
NOOBS version to install this operating system on your Raspberry Pi. For this installation, we are
not going to be installing MongoDB, instead we are just going to be using NeBD as a database
that comes by default with MeshCentral.

3.1 Installing NodeJS

Start by opening a terminal. For all of the installation, we will assume we are the default ñpiò user
and we are in the home (~) folder. Letôs get started by installing NodeJS.

sudo apt - get update

sudo apt - get dist - upgrade

curl - sL https://deb.nodesource.com/setup_8.x | sudo - E bash ï

sudo apt - get install - y nodejs

We can now check what version of Node was installed by typing:

 node - v

If all goes well, we can now move on to port permissions and installing MeshCentral itself.

3.2 Port permissions

On Linux, ports below 1024 are reserved for the ñrootò user. This is a security feature. In our case
MeshCentral will need to listen to ports 80 and 443. To allow this, we need to allow node to listen
to ports below 1024 like this:

 8

whereis node

node: /usr/bin/node /usr/include/node /usr/share/man/man1/node.1.gz

sudo setcap cap_net_bin d_service=+ep /usr/ bin/node

We first locate the node binary, using ñwhereis nodeò, we then use the ñsetcapò command to add
permissions to node. Note that we take the path given by whereis and place it in the setcap
command.

3.3 Installing MeshCentral

Now, we can use the Node Package Manager (NPM) to install MeshCentral.

npm install meshce ntral

After that, we can run MeshCentral for the first time. We want to run in WAN-only mode since we
will not be managing any computers on the same local network at this server. We also want to
create a server with a certificate name that is the same at the AWS instance name. So, we will use
ñ--wanonlyò and ñ--cert [name]ò arguments to get the server started. For example:

node node_modules/meshcentral -- lan only -- fastcert

At this point, the server will create its certificates and start running.

MeshCentral HTTP redirection web server running on port 80.

Generating certificates, may take a few minutes...

Generating root certificate...

Generating HTTPS certificate...

Generating MeshAgent certificate...

Generating Intel AMT MPS certificate...

Generating Intel AMT console certificate...

Server name not configured, running in LAN - only mode.

MeshCentral HTTPS web server running on port 443.

Server has no users, next new account will be site administrator.

The next step is to get the IP address of the Raspberry Pi. Use ñipconfigò:

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.2.162 netmask 255.255.255.0 broadcast 192.168.2.255

 inet6 fe80::8841:34b7:685:14a7 prefixlen 64 scopeid 0x20<link>

 ether b8:27:eb:01:13:3f txqueuelen 1000 (Ethernet)

 RX packets 58325 bytes 72302196 (68.9 MiB)

 RX errors 0 dropped 271 overruns 0 frame 0

 TX packets 28457 bytes 3576126 (3.4 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

You can now open a browser to the name of the server, for example:

https://192.168.2.162

You will see the server working as expected. You will get a certificate error since the server is used
an untrusted certificate for now. Just ignore the error and see the MeshCentral Userôs Guide to fix
this.

https://192.168.2.162/

 9

3.4 Configuring for LAN-only mode

By default, MeshCentral will assume that you are managing devices both on a local network and
on the internet. In the case of this Raspberry Pi installation, we only want to manage device on the
local network and so, we can configure MeshCentral to do this. It will adapt the server for this
usages. To do this, edit the config.json file:

 pico ~/meshcentral - data/c onfig.json

Then, make the start of the file look like this:

{

 "settings": {

 "LANonly": true,

 "F astC ert ": true,

 "_Port": 443,

 "_RedirPort": 80,

 "_AllowLoginToken": true,

 "_AllowFraming": true,

 "_WebRTC": false,

 "_ClickOnce": false,

 "_UserAllowedIP" : "127.0.0.1,::1,192.168.0.100"

 },

é

}

While we are at it, we can put ñFastCertò to true so that RSA2048 certificates are created instead
of RSA3072. This is less secure but runs much faster on small processors like the Raspberry Pi.
This is the same as specifying ñ--fastcert" in the prior section.

 10

3.5 Manually starting the server

We can manually start and stop the MeshCentral server in the background in different ways. In this
section, we are going to create two commands ñmcstartò and ñmcstopò to take care of this. Type
this to create the two commands:

echo " node ./node_modules/meshcentr al > stdout.txt 2> stderr.txt & " > mcstart

chmod 755 mcstart

echo " pkill - f meshcentral " > mcstop

chmod 755 mcstop

You can now run the ñ./mcstartò command to launch the server in the background and stop it using
the ñ./mcstopò to stop it. This should work pretty well, but if the AWS instance is ever stopped and
started again, the server will not automatically launch.

3.6 Automatically starting the server

Since Raspbian OS supports systemd, we are going to use that to auto-start MeshCentral in the
background. First, we need to know our own username and group. If we do ñls -lò in our home folder
we

drwxr - xr - x 2 pi pi 4096 Jul 19 21:23 Desktop

drwxr - xr - x 2 pi pi 4096 Jun 26 18:23 Documents

drwxr - xr - x 2 pi pi 4096 Jun 26 18:23 Downloads

é

Note the username and group name, in this example itôs ñpiò for both. We need this information to
create the system service description file. To create this file type:

sudo nano /etc/systemd/system/meshcentral.service

Then enter the following lines:

[Unit]

Description=MeshC entral Server

[Service]

Type=simple

ExecStart=/usr/bin/node /home/ pi /node_modules/meshcentral

WorkingDirectory=/home/ pi

User= pi

Group= pi

Restart=always

Restart service after 10 seconds if node service crashes

RestartSec=10

[Install]

WantedBy=multi - user.target

Note that the user and group values have to be set correctly for your specific situation. Also, the
ExecStart and WorkingDirectory lines includes the path to the userôs home folder which includes
the username in it. Make sure that is set correctly.

 11

Once this is done, you can now start, enable, stop and disable using the following commands:

sudo systemctl start meshcentral.service

sudo systemctl enable meshcentral.service

sudo systemctl stop meshcentral.service

sudo systemctl disable meshcentral.service

Type in the first two commands to start and enable the service. Enabling the service will make it
automatically start when the computer restarts.

Once the server is launched, you can access it using a web browser as before. From this point
on, refer to the MeshCentral Userôs Guide for information on how to configure and use
MeshCentral.

4. Ubuntu 18.04

In this section, we will look at installing MeshCentral on Ubuntu 18.04 LTS.
This is a long term support of Ubuntu freely available for download at
https://www.ubuntu.com. Both the desktop and server versions of Ubuntu
will work. If this is a remote server and the desktop will not be used, the
server version of Ubuntu can be used. This section will describe a way to
install MeshCentral in a userôs home folder, however there is a more secure
way to do it, see ñIncreased Security Installationò at the end of this section.

4.1 Installing NodeJS

The first thing to do is get NodeJS installed on the computer. We first install the node version
manager then activate it and install the NodeJS TLS. Itôs done with 3 commands:

sudo apt update

sudo apt install ïy nodejs

sudo apt install ïy npm

We can test what version of Node and NPM are installed using:

node ïv

npm - v

4.2 Installing MongoDB

If we are going to run a large instance, itôs best to use MongoDB
as the database. If you are using a small instance, you can skip
installing MongoDB and MeshCentral will use NeDB instead
which is a light weight database that is probably great for
managing less than 100 computers.

If you want to use MongoDB, we can install MongoDB Community Edition. More information on
how to do this for Ubuntu can be found here.

You can install the package using apt and get it started like this:

https://www.ubuntu.com/
https://www.digitalocean.com/community/tutorials/how-to-install-mongodb-on-ubuntu-18-04

 12

sudo apt install ïy mongodb

Then start the Mongodb service in the background and enable it for auto-restart.

sudo systemctl start mongodb

sudo systemctl enable mongodb

To verify that MongoDB is running, you can enter the MongoDB shell like this:

mongo -- host 127.0.0.1:27017

You can leave the shell using Ctrl-C. The database and log files will be create at these locations:

/var/log/mongodb

/var/lib/mongo

This is useful to know if you want to make a backup of the database file.

4.3 Port permissions

On Linux, ports below 1024 are reserved for the ñrootò user. This is a security feature. In our case
MeshCentral will need to listen to ports 80 and 443. To allow this, we need to allow node to listen
to ports below 1024 like this:

sudo setcap cap_net_bind_service=+ep / usr /bin/node

4.4 Installing MeshCentral

Now, we can use the node package manager (NPM) to install MeshCentral.

npm install meshcentral

After that, we can run MeshCentral for the first time. For example:

node ./node_modules/meshce ntral

If the computer has a well-known DNS name that users and agents will use to connect to this
server, run MeshCentral like this:

node ./node_modules/meshcentral ïcert example.servername.com

At this point, the server will create its certificates and start running.

MeshCentral HTTP redirection web server running on port 80.

Generating certificates, may take a few minutes...

Generating root certificate...

Generating HTTPS certificate...

Generating MeshAgent certificate...

Generating Intel AMT MPS certificate...

Generating Intel AMT console certificate...

MeshCentral Intel(R) AMT server running on ec2 - 54- 245 - 141 - 130.us - west - 2.compute.amazonaws.com:4433.

MeshCentral HTTPS web server running on ec2 - 54- 245 - 141 - 130.us - west - 2.compute.amazonaws.com:443.

Server has no users, next new account will be site administrator.

You can now open a browser, for example:

http :// localhost

 13

You will see the server working as expected. You will get a certificate error since the server is used
an untrusted certificate for now. Just ignore the error and see the MeshCentral Userôs Guide to fix
this.

At this point, the server is usable but, there are two things that may still need to be done. First, if
we opted to use MongoDB, we have to configure MeshCentral to use a MongoDB database. By
default, NeDB will be used which should only be used for small deployments managing less than
100 computers. We also need to automatically start the server when the computer starts.

To continue, stop the MeshCentral server with CTRL-C.

4.5 Configuring for MongoDB

By default, MeshCentral uses NeDB with a database file located in ~/meshcentral-
data/meshcentral.db. This is great for small servers, but if we opted to install MongoDB, letôs make
use of it. We need to edit the config.json file located in the meshcentral-data folder.

 nano ~/meshcentral - data/config.json

Then, make the start of the file look like this:

{

 "settings": {

 "MongoDb": "mongodb://127.0.0.1:27017/meshcentral",

 "MongoDbCol": "meshcentral",

 "WANonly": true,

 "_Port": 443,

 "_RedirPort": 80,

 "_AllowLoginToken": true,

 14

 "_Allow Framing": true,

 "_WebRTC": false,

 "_ClickOnce": false,

 "_UserAllowedIP" : "127.0.0.1,::1,192.168.0.100"

 },

é

}

If you start with the default config.json created by MeshCentral, you will need to remove some ñ_ò
characters in front of settings, mongodb, mongodbcol and wanonly. You can also add a ñ_ò to other
values.

You can then same the same and run MeshCentral again. This time, you donôt need to specify the
certificate name or --wanonly. You just need to run it like this:

node ./node_modules/meshcentral

The server should now run correctly and use MongoDB. You can even delete the file
~/meshcentral-data/meshcentral.db as itôs not going to be used anymore. You can check that it
runs correctly by browsing to the serverôs address again and creating a new account. The first
account that is created will be administrator for the server, so donôt delay and create the first
account right away.

Once you are done, we can stop the server again using CTRL-C and in the next sections, we will
look at starting the server in the background.

4.6 Manually starting the server

We can manually start and stop the MeshCentral server in the background in different ways. In this
section, we are going to create two commands ñmcstartò and ñmcstopò to take care of this. Type
this to create the two commands:

echo " node ./node_modules/meshcentr al > stdout.txt 2> stderr.txt & " > mcstart

chmod 755 mcstart

echo " pkill ïf meshcentral " > mcstop

chmod 755 mcstop

You can now run the ñ./mcstartò command to launch the server in the background and stop it using
the ñ./mcstopò to stop it. This should work pretty well, but if the AWS instance is ever stopped and
started again, the server will not automatically launch.

4.7 Automatically starting the server

Since Ubuntu 18.04 supports systemd, we are going to use that to auto-start MeshCentral in the
background. First, we need to know our own username and group. If we do ñls -lò in our home folder
we get for example:

drwxr - xr - x 2 default default 4096 Jul 20 00:03 Desktop

drwxr - xr - x 2 default default 4096 Jul 20 00:03 Documents

drwxr - xr - x 2 default default 4096 Jul 20 00:03 Downloads

é

 15

Note the username and group name, in this example itôs ñdefaultò for both. We need this information
to create the system service description file. To create this file type:

sudo pico /etc/systemd/system/meshcentral.service

Then enter the following lines:

[Unit]

Description=MeshC entral Server

[Service]

Type=simple

ExecStart=/usr/bin/node /home/ default /node_modules/meshcentral

WorkingDirectory=/home/ default

User= default

Group= default

Restart=always

Restart service after 10 seconds if node service crashes

RestartSec=10

[Install]

WantedBy=multi - user.target

Note that the user and group values have to be set correctly for your specific situation. Also, the
ExecStart and WorkingDirectory lines includes the path to the userôs home folder which includes
the username in it. Make sure that is set correctly.

Once this is done, you can now start, enable, stop and disable using the following commands:

sudo systemctl start meshcentral.service

sudo systemctl enable meshcentral.service

sudo systemctl stop meshcentral.service

sudo systemctl disable meshcentral.service

Type in the first two commands to start and enable the service. Enabling the service will make it
automatically start when the computer restarts.

Once the server is launched, you can access it using a web browser as before. From this point
on, refer to the MeshCentral Userôs Guide for information on how to configure and use
MeshCentral.

4.8 Increased Security Installation

On Debian based Linux distributions like Ubuntu, a better and more secure way to install
MeshCentral is to have it run within a user account this restricted privileges. Instead of installing
MeshCentral is a userôs home folder, we install it in /opt/meshcentral and we create a
meshcentral user that does not have rights to login or change any of the MeshCentral files. To do
this, start by creating a new user called ñmeshcentralò

userad d - r - s /sbin/nologin meshcentral

We can then create the installation folder, install and change permissions of the files so that the
ñmeshcentralò account gets read-only access the files.

 16

mkdir /opt/meshcentral

cd /opt/meshcentral

sudo npm install meshcentral

chown - R meshcentral:meshcentral /opt/meshcentral

To make this work, you will make to make MeshCentral work with MongoDB because the
/meshcentral-data folder will be read-only. In addition, MeshCentral will not be able to update
itself since the account does not have write access to the /node_modules files, so the update will
have to be manual. First used systemctl to stop the MeshCentral server process, than use this:

cd /opt/meshcentral

sudo npm install

chown - R meshcentral:meshcentral /opt/ meshcentral

This will perform the update to the latest server on NPM and re-set the permissions so that the
meshcentral user account has read-only access again. You can then use systemctl to make the
server run again.

5. Microsoft Azure

In this section, we will look installing MeshCentral on Microsoft Azure. Microsoft Azure offers
many operating system options and we will be selecting ñUbuntu Serverò as our choice. From the
Azure portal, we select ñVirtual machinesò on the left and ñAddò.

Once you click on Ubuntu Server, you will see a list of available versions. In this example, we
selected Ubuntu 18.04 LTS (Long Term Support). We then have to create a instance name and a
way to authenticate to the instance.

 17

Next is the type of instance to launch. Any instance will do including the ñB1sò which is the
smallest possible instance. Of course, as you manage more computers, using an instance that is
a bit more powerful is a good idea.

 18

After selecting the instance type, you can configure storage. 30 gigabytes is plenty. Then the
Network Security Group. This is where itôs important to open at least TCP ports 22, 80 and 443.

Type Protocol Port Range Description

SSH TCP 22 SSH

HTTP TCP 80 HTTP

HTTPS TCP 443 HTTPS

Custom TCP Rule TCP 4433 Intel AMT CIRA

Custom TCP Rule TCP 8080 Swarm Server*

Optionally if you wish to use the instance with Intel AMT, open port 4433. In addition port 8080
must be open if you are migrating from MeshCentral1 (not typical).

Lastly we launch the instance, it will take a few minutes to setup.

You can then find the public IP address and use a SSH client like PUTTY on Windows to connect
to the instance and start getting MeshCentral setup. From this point on, just use the Ubuntu
section above to complete the installation.

6. Google Cloud

In this section, we will look installing MeshCentral on Google Cloud. You can sign up easily at
https://cloud.google.com/ and you can run a small instance for less than 5$ a month.

https://cloud.google.com/

 19

Once you have create an account, you can go to the main console and on the left side, go to
ñCompute Engineò and create a new VM instance. For our demonstration, we are going to create
the smallest instance possible which is a single shared CPU and only 0.6 gigs of RAM.

We select the proper settings and select ñUbuntu 18.04 LTS Minimalò as the boot operating
system. This is convenient as we already covered how to install MeshCentral on this operating
system.

 20

Make sure to allow HTTP and HTTPS traffic. Setup like this, we will not be able to manage Intel
AMT unless we also open TCP port 4433. Once done with all these options, we can launch the
VM instance.

The new instance will take a few minutes to start up. An interesting feature of Google Cloud is
that you can access the VM instance shell directly from the web browser. No need for a separate
SSH client. This is exactly what we need and we opt to go ahead and option the web console.

